Каталог продукции
Энергетические технологии
Разработка, производство и обслуживание систем электропитания
Пн - Чт с 8:30 до 17:30
Пт с 8:30 до 16:30
Настоящая статья является продолжением цикла публикаций о системах бесперебойного питания переменного тока (ЭК №7 2003, №4 2004, №6 2004). Рассматриваются особенности построения и схемотехнические решения трехфазных ИБП. Приводятся технические характеристики ИБП ряда известных мировых производителей.
Источники бесперебойного питания (ИБП) предназначены для защиты электрооборудования пользователя от нештатных ситуаций, возникающих в питающей сети, включая искажение или пропадание напряжения, а также для подавления импульсных помех. Разнообразные топологии ИБП были рассмотрены в работе [1].
Наиболее распространены ИБП с двойным преобразованием энергии, обеспечивающие переход с сетевого режима на автономный (питание нагрузки энергией аккумуляторной батареи) без прерывания питания. Такие ИБП обеспечивают синусоидальную форму и симметрию трехфазного выходного напряжения, и обычно используются в приложениях, предъявляющих повышенные требования к качеству электропитания.
Вопросам проектирования и исследования трехфазных ИБП посвящен ряд публикаций, например [2, 3], рассматривающих, в основном, классическую структуру построения ИБП с двойным преобразованием энергии. Появление новых электронных компонентов, привело к появлению новых технологий построения ИБП. Варианты схемотехнических решения силовых узлов современных трехфазных ИБП средней и большой мощности (10 кВА:400 кВА) можно разделить на три группы (см. рис. 1):
а) ИБП с АБ в цепи питания инвертора;
б) ИБП с бустером в цепи питания инвертора;
в) ИБП с входным ШИМ-преобразователем
Рис. 1. Структурные схемы трехфазных ИБП
Классическая структура ИБП с АБ в цепи питания инвертора, представленная на рисунке 1а, содержит мостовой управляемый тиристорный выпрямитель (УВ), высоковольтную аккумуляторную батарею (АБ), трехфазный мостовой инвертор напряжения (ИН) на IGBT-транзисторах, трехфазный выходной трансформатор (ТР) с обмотками, включенными по схеме треугольник-звезда и выходной фильтр (Ф).
Система управления выпрямителем УВ в статическом режиме поддерживает напряжение на его выходе с высокой точностью при допустимом диапазоне изменения входного напряжения ±15% от номинального значения. В случае выхода напряжения за указанные пределы ИБП переходит в автономный режим работы. Выходное напряжения УВ регулируется изменением угла отпирания тиристоров и является функцией нескольких параметров, в том числе и зарядного тока АБ. В общем виде структурная схема многоконтурной системы регулирования показана на рисунке 2.
Рис. 2. Структурная схема системы регулирования напряжения на выходе УВ
Для исключения значительных бросков тока через сглаживающий конденсатор, подключенный к выходу УВ, применяется мягкий пуск - плавное (в течение 10-30 с после подачи входного напряжения на ИБП) увеличение выходного напряжения. Значение емкости сглаживающего конденсатора выбирается так, чтобы величина пульсаций выходного напряжения не превышала 1%.
Выполнения этого требования влечет за собой значительное искажение формы входного тока, коэффициент искажения синусоидальности которого составляет 33%, что в свою очередь приводит к уменьшению коэффициента мощности до 0,8 [3]. С уменьшением нагрузки эти показатели еще более ухудшаются (см. табл. 1).
Таблица №1 Входной коэффициент мощности и коэффициент несинусоидальности входного тока
в зависимости от типа выпрямителя ИБП и степени его загрузки
Показатель | Нагрузка ИБП, % |
Тип выпрямителя | |||
---|---|---|---|---|---|
мостовой | 2-мостовой | мостовой с фильтром 5-ой гармоники |
ШИМ- преобразо- ватель |
||
Входной коэффициент мощности | 25 | 0,65 | 0,7 | 0,9 | 0,98 |
50 | 0,7 | 0.78 | 0,97 | 0,98 | |
75 | 0,75 | 0,8 | 0,95 | 0,99 | |
100 | 0,8 | 0,85 | 0,93 | 0,99 | |
Коэффициент несинусоидальности входного тока, % | 25 | 60 | 25 | 20 | 6 |
50 | 50 | 16 | 15 | 5 | |
75 | 38 | 12 | 10 | 4 | |
100 | 33 | 10 | 5 | 3 |
Наиболее существенными высокочастотными гармониками во входном токе ИБП являются пятая и седьмая (250 Гц и 350 Гц). Широко распространенным методом снижения высокочастотных гармоник входного тока ИБП является применение пассивного фильтра для них на входе ИБП (см. рис. 3).
Рис. 3. 6-полупериодный мостовой выпрямитель с фильтром 5-ой гармоники
Параметры продольных и поперечных ветвей фильтра L1, L2, C2 выбираются из условия получения резонансной частоты, равной частоте пятой гармоники. Такая настройка фильтра позволяет уменьшить коэффициент искажения синусоидальности входного тока и повысить коэффициент мощности. На рисунке 4 приведены осциллограммы и спектральный состав входного тока ИБП номинальной мощностью 120 кВА с мостовым выпрямителем на нагрузке, составляющей 25% номинальной мощности. Измерения произведены с использованием универсального прибора Industrial Scope Meter Fluke 123 и токовых клещей Tektronix А600.
а) осциллограммы входного тока и напряжения без фильтра;
б) график спектрального состава входного тока без фильтра;
в) осциллограммы входного тока и напряжения ИБП с фильтром пятой гармоники;
г) график спектрального состава входного тока ИБП с фильтром пятой гармоники
Рис. 4. Форма входного напряжения и тока ИБП с 6-ти полупериодным выпрямителем, гармонический состав входного тока
При использовании фильтра, коэффициент пятой гармоники входного тока снижается с 63% до 16%, а коэффициент искажения синусоидальности уменьшается с 60% до 25%. С увеличением нагрузки эти коэффициенты уменьшаются. Следует отметить, что при работе на холостом ходу или на малых нагрузках входной коэффициент мощности ИБП с фильтром 5-ой гармоники может принимать отрицательные значения, так как входное сопротивление УВ приобретает емкостной характер. Это обстоятельство может неблагоприятно сказываться на работе дизель-генератора ограниченной мощности в системах бесперебойного питания. Для исключения указанного недостатка используют компенсированные фильтры и фильтры с коммутаторами в поперечных ветвях [4].
Для снижения высокочастотных составляющих входного тока также возможно использовать 12-полупериодный выпрямитель, состоящий из двух мостовых трехфазных выпрямителей, выходы которых включены параллельно. Входные напряжения одноименных фаз этого выпрямителя сдвинуты на 30? за счет применения, например, трехфазного входного трансформатора с двумя комплектами вторичных обмоток, один из которых включен по схеме звезда, а другой - треугольник. Коэффициент искажения синусоидальности входного тока уменьшается до 10%, а входной коэффициент мощности ИБП увеличивается до 0,9 (см. таблицу 1). Как видно из спектрального графика ( рис. 5б), в составе входного тока в этом случае имеется только 11-ая гармоника с коэффициентом 6,6%.
а) осциллограмма входного тока;
б) график спектрального состава входного тока
Рис. 5 Форма входного тока ИБП с 12-ти полупериодным выпрямителем, гармонический состав водного тока
Для улучшения гармонического состава входных токов и увеличения коэффициента мощности возможно использование в выпрямителях IGBT-транзисторов вместо тиристоров. Высокочастотное ШИМ-управление транзисторами обеспечивает входной ток ИБП, приближенный по форме к синусоиде. Примером ИБП с таким выпрямителем является модель PW 9340 (80-130 кВА) производства POWERWARE, обеспечивающая коэффициент несинусоидальности входного тока не более 4% и входной коэффициент мощности 0,99 [5].
Трехфазный выходной инвертор напряжения ИБП представляет собой мостовую схему, созданную с использованием IGBT-транзисторах с ШИМ-управлением по синусоидальному закону. На выходе инвертора генерируются высокочастотные прямоугольные импульсы переменной ширины и постоянной амплитуды, равной напряжению АБ. Номинальные значения напряжений АБ в классических схемах трехфазных ИБП составляют 384-480 В. Так как выходное напряжение инвертора не может превышать входное, то для увеличения амплитуды линейного выходного напряжения до значения = 537 В к выходу инвертора подключается повышающий трансформатор, индуктивности рассеяния обмоток которого и конденсаторы, подключенные к вторичным обмоткам, образуют выходной фильтр, обеспечивающий фильтрацию высокочастотных составляющих ШИМ (7,5 кГц:15 кГц) в выходном напряжении ИБП.
Применение DSP-процессоров для управления транзисторами инвертора позволяет реализовать алгоритм пространственно-векторной модуляции, благодаря которому коэффициент искажения синусоидальности выходного напряжения не превышает 3% при линейной нагрузке и 5% при нелинейной нагрузке. Стабилизация выходного напряжения ИБП в диапазоне изменения симметричной нагрузки 0-100% обеспечивается с точностью ±1%. Современные трехфазные ИБП позволяют работать на несимметричной трехфазной нагрузке. При полностью несбалансированной нагрузке статическая точность стабилизации выходного напряжения нагруженной фазы составляет ±5%.
Следует отметить, что наличие выходного трансформатора в классической схеме ИБП не может обеспечить полной гальванической развязки нагрузки с сетью, т.к. при переходе в режим байпас входная и выходная нейтрали объединяются.
Для ИБП, соответствующих классической схеме (см. рис. 1а), характерны повышенные массогабаритные показатели. Тем не менее, ИБП мощностью более 100 кВА в настоящее время производятся преимущественно по классической схеме, т.к. в этом диапазоне мощностей они обладают наиболее высокими показателями надежности. Последнее обусловлено меньшим числом силовых узлов преобразования энергии по сравнению с бестрансформаторными структурами с бустером или реверсивным ШИМ-преобразователем, а также меньшими перенапряжениями, возникающими при коммутации токов (достигающих сотен ампер) силовыми транзисторными модулями инвертора.
Международная электротехническая комиссия (МЭК) и европейская организация по стандартизации в электротехнике приняли стандарты IEC 1000-3-2 (EN 61000-3-2) и IEC 1000-3.3 (EN 61000-3-3), устанавливающие ограничения на величину гармонических составляющих входного тока электрооборудования. Уменьшение этих составляющих возможно за счет применение активной коррекции коэффициента мощности. Их отличительной особенностью является отсутствие трансформатора, использование неуправляемого выпрямителя и наличие бустера-корректора коэффициента мощности (БС) в силовой цепи ИБП (см. рис. 1б). Функциональная схема подобного ИБП приведена на рисунке 6.
Рис. 6. Функциональная схема ИБП с бустером в цепи питания инвертора
Аккумуляторная батарея, как правило, состоит из двух секций со средней точкой, соединенной с нейтральным проводом. Каждая секция АБ подключается к соответствующей выходной шине выпрямителя через тиристоры VD1 и VD2, которые закрыты в сетевом режиме работы, когда осуществляется заряд АБ. Зарядные устройства подключены к шинам стабильного напряжения постоянного тока на выходе бустера, что позволяет получить к.п.д. ЗУ вплоть до 96%...99%.
Номинальное напряжение аккумуляторных батарей различных моделей для бестрансформаторных ИБП приведено в таблице 2.
Таблица №2. Технические характеристики трехфазных ИБП с бустером
Производитель | Модель ИБП | Номинальная мощность, кВА |
Номинальное напряжение АБ, В |
Диапазон входного межфазного напряжения, В |
Статическая точность, % |
Динамическая точность, % |
Время переходного процесса, мс |
---|---|---|---|---|---|---|---|
Powerware | PW 9305 | 7,5-80 | 576 | 279-484 | ±1 | ±3 | н/д |
Liebert | Hinet | 10-30 | 384 | 300-480 | ±5 | 30 | |
Riello | Multi Dialog | 10-80 | 576 | 320-480 | ±5 | 10 |
Двухплечевой бустер - повышающий преобразователь напряжения постоянного тока - состоит из IGBT-транзисторов VT1, VT2, диодов VD3, VD4, дросселей L1, L2 и накопительных конденсаторов С1, С2. Преобразователь осуществляет следующие функции:
Эти функции реализуются с помощью применения определенных алгоритмов ШИМ для управления транзисторами VT1, VT2 реализуемых контроллерами типа UC 3854 [6]. При этом входной коэффициент мощности ИБП повышается до 0,95. Коэффициент передачи напряжения повышающего преобразователя (бустера) в режиме непрерывного тока дросселей L1, L2 достигает 4 [7]. Это обеспечивает более широкий диапазон допустимого входного напряжения, при котором ИБП не переходит в автономный режим, по сравнению с классической структурой ИБП (см.таблицу 2) [5, 8, 9]. Кроме того, в автономном режиме работы по мере разряда АБ бустер обеспечивает стабильное напряжение на шинах постоянного тока питания инвертора.
Частота ШИМ, используемая для управления IGBT-транзисторами трехфазного мостового инвертора, составляет 15 кГц:30 кГц и подавляется L3C3-фильтрами на выходе ИБП, с помощью которых формируется синусоидальное напряжение частотой 50 Гц. Коэффициент искажения синусоидальности выходного напряжения при линейной нагрузке составляет менее 2%, а при нелинейной нагрузке не превышает 5%.
Величина емкости накопительных конденсаторов С1, С2, запасенная энергия которых, используется для питания инвертора при набросе нагрузки, или кратковременных пропаданиях сетевого напряжения, выбирается исходя из расчета 360 мкФ:660 мкФ на 1 кВА выходной мощности инвертора. Запасенная в конденсаторах энергия обеспечивает высокие динамические показатели ИБП (см. таблицу 2).
Стремление увеличить коэффициент мощности в широком диапазоне изменения нагрузки и улучшить динамические характеристики ИБП с одной стороны, и появление доступных для широкого применения высоковольтных быстродействующих силовых IGBT-модулей с другой стороны, привело к появлению структуры ИБП с двунаправленным мостовым ШИМ-преобразователем (см. рис. 1в).
Функциональная схема указанного ИБП приведена на рисунке 7. Входной трехфазный ШИМ-преобразователь реализован на IGBT-транзисторах VT1:VT6, фазных дросселях Lа,Lв,Lс и накопительных конденсаторах С1, С2 [10].
Рис. 7. Функциональная схема ИБП с входным ШИМ-преобразователем
Такой ШИМ-преобразователь имеет следующие особенности:
Эти свойства реализуются за счет применения ШИМ-управления транзисторами преобразователя с частотой коммутации 7,5 кГц...15 кГц. Входной ток при этом имеет практически синусоидальную форму и совпадает по фазе с входным напряжением.
Балансировщик напряжений, состоящий из транзисторов VT7, VT8 и индуктивности L1 (см. рис. 7), представляет собой устройство, обеспечивающее балансировку дифференциального напряжения постоянного тока. Симметрирование напряжений на шинах постоянного тока питания инвертора необходимо для исключения постоянной составляющей в выходном напряжении. Кроме того, БН уменьшает пульсации тока в накопительных конденсаторах С1, С2.
Схема преобразователя напряжения для АБ основана на транзисторах VT9, VT10, диодах VD1, VD2 и индуктивности L2. Преобразователь имеет два назначения:
При работе в режиме зарядного устройства транзистор VT10 закрыт, а транзистор VT9 коммутируется с высокой частотой, что обеспечивает необходимое напряжение заряда АБ. При переходе ИБП в автономный режим DC/DC-конвертор выполняет функцию бустера, обеспечивая стабильное повышенное напряжение шин постоянного тока при разряде АБ. При этом транзистор VT9 закрыт, а транзистор VT10 переключается с частотой в 2:4 раза меньшей, чем транзистор VT9 при работе в режиме зарядного устройства.
Трехфазный инвертор аналогичен мостовому инвертору в структуре ИБП с бустером (см. рис. 6) и имеет на выходе LC-фильтр, выделяющий основную гармонику 50 Гц из высокочастотного выходного ШИМ-напряжения инвертора. В таблице 3 приведены основные технические характеристики ИБП с ШИМ-преобразователем ряда производителей [11-14].
Таблица №3. Технические характеристики ИБП с входным ШИМ-преобразователем
Параметр | Производитель, модель ИБП | |||
---|---|---|---|---|
Powerware | MGE | Liebert | ||
PW 9255 | PW 9390 | Gallaxy 3000 | NXa | |
Номинальная мощность, кВА | 8, 10, 12, 15 | 40, 60, 80, 120, 160 | 10, 15, 20, 30 | 30, 40, 60, 80 |
Входной коэффициент мощности | 0,99 | |||
Выходной коэффициент мощности | 0,9 | 0,8 | ||
Коэффициент несинусоидальности входного тока, % | 5 | 3 | ||
Диапазон отклонений входного напряжения без перехода ИБП в автономный режим при 100%-нагрузке, % | -15, +10 | -10, +15 | ±15 | -20, +25 |
Статическая точность выходного напряжения, % | ±3 | ±1 | ||
Динамическая точность выходного напряжения при 100% скачке нагрузки, % | ±5 | ±3 | ±5 | |
Время переходного процесса при 100% скачке нагрузки, мс | 3 | 1 | 20 | н/д |
КПД при 100% нагрузки, % | 91 | 92-94 | 89 | 89,4 - 90,5 |
К особенностям ИБП с ШИМ-преобразователем можно отнести:
В заключение следует отметить, что при выборе модели ИБП пользователь должен принимать в расчет как наличие необходимых потребительских свойств, соотношение цена/качество, но и надежность, и удобство, и стоимость сервисного обслуживания ИБП.
Климов В.П., Москалев А.Д.
Статья опубликована в журнале "Электронные компоненты" N6 за 2005 год.